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ABSTRACT

Solutions for the uniaxial stress—strain response of a body containing a distribution of non-interacting
nonlinear cracks are derived. First, building on energy formalisms outlined by previous workers, general
solutions are derived for the body containing cracks with dissipative tractions at their surfaces, in either
tension or compression loading. The special case of a body in compression loading with sliding closed
cracks governed by a general friction law is then considered as a case study. The friction law contains two
shear resistance terms : a “friction coefficient” term proportional to the resolved normal compression stress
across the crack plane; and a “‘cohesion” term representing the intrinsic shear resistance of the closed
crack. Inclusion of the latter term is critical to the existence of a well-defined yield point in the stress—strain
curve. It is assumed that the cracks do not extend at their ends during the loading—unloading-reloading
cycle ; they are, however, allowed to undergo reverse sliding during the unloading. Two crack distributions
are considered : all cracks aligned, leading to linear expressions for both the elastic and quasi-plastic stress—
strain regions; and cracks randomly oriented, with more complex (but nonetheless tractable) expressions
for the quasi-plastic regions. The resultant nonlinear stress—strain curves exhibit cyclic hysteresis, to an
extent dependent on friction and crack configuration parameters. Illustrative stress—strain curves are
generated for selected ranges of these controlling parameters. An outcome of the analysis is the potential
link to microstructural variables, via the crack configuration parameter, offering the prospect for predictions
of damage accumulation in real microstructures. The model also offers the prospect of accounting for
fatigue properties, via attrition of the frictional resistance at the sliding crack surfaces. © 1997 Elsevier
Science Ltd. All rights reserved

Keywords: A. fracture mechanisms, A. microcracking, A. microstructures, B. constitutive behavior, B.
friction.

1. INTRODUCTION

The class of problems involving ordinarily brittle materials with nonlinear constitutive
stress—strain responses has received surprisingly little attention in the mechanics
literature. Such nonlinear responses are common in rocks (Jaeger and Cook, 1971;
Paterson, 1978) and concretes (Shah, et al., 1995), and even in some ceramics (Lawn
et al., 1994a; Padture and Lawn, 1995a,b), under constrained compression loading.
In those cases the nonlinearity is attributable to sliding friction at pre-existent internal
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crack-like defects (Ashby and Hallam, 1986 ; Horii and Nemat-Nasser, 1986 ; Nemat-
Nasser and Obata, 1988 ; Kemeny and Cook, 1991 ; Myer et al., 1992) or incipient
microstructural “shear faults” (Lawn et al., 1994a). Nonlinear responses are also
observed in certain otherwise brittle solids under tension loading, e.g. ceramics con-
taining “‘bridged” cracks where frictional tractions from grains (Mai and Lawn, 1987 ;
Swanson et al., 1987), reinforcing fibers or whiskers (Cox and Marshall, 1991) or metal
ligaments (Evans, 1990) restrain crack separation. Experimentally, the nonlinearity is
manifested as a departure from ideal elasticity above some threshold ““yield” stress in
the loading half-cycle, with hysteresis on unloading.

Linear problems, on the other hand, have been widely addressed, especially by
those concerned with effective elastic moduli of bodies containing arrays of micro-
scopic cracks. If the cracks do not extend or multiply the loading response remains
linear, although with reduced modulus relative to an ideal uncracked solid, and again
with possible hysteresis on unloading. A classic example is a compressively loaded
body containing an array of identical closed cracks governed by a simple coefficient
of sliding friction (Walsh, 1965; Jaeger and Cook, 1971). The load—unload stress—
strain curve for this system has three branches: (i) loading branch, linear through the
origin, but with reduced modulus owing to continuous frictional sliding at the crack
interfaces; (ii) partial unloading branch, linear but with intrinsic modulus cor-
responding to that of an uncracked solid, reflecting a transient delay in sliding as the
friction reverses ; (iii) final unloading branch, linear back through the origin, with even
lower modulus than during loading, as reverse sliding is activated. Linear solutions are
also available for various crack geometries in tension and for various effective media
approximations {(Budiansky and O’Connell, 1976 ; Horii and Nemat-Nasser, 1983;
Hashin, 1988), for fluid-filled cracks (Budiansky and O’Connell, 1976), and for crack
arrays with interactions (Kachanov, 1992 ; Kachanov, 1994). Nonlinear stress—strain
solutions in the loading half-cycle exist only for cases where the cracks are allowed to
extend from their ends Ashby and Hallam, 1986; Horii and Nemat-Nasser, 1986;
Nemat-Nasser and Obata, 1988 ; Kemeny and Cook, 1991 ; Myer et al., 1992).

In the first part of this paper (Section 2) we derive generalized solutions for an
isotropic body containing a random three-dimensional distribution of non-inter-
acting, stationary, nonlinear cracks for use as a basis for damage modelling. We
begin by considering the energetics for cracks governed by a nonlinear constitutive
displacement—stress relation, and thence present a formulation for the stress—strain
response. The stress state is conveniently taken to be uniaxial, tension or compression,
but may be readily extended to multiaxial loading.

In the second part of this paper we consider a special nonlinear crack system as an
illustrative case study, first a body with a single closed crack (Section 3) and then a
body with multiple non-interacting closed cracks (Section 4), in uniaxial compression.
The problem is similar to the one described by Walsh (1965), but with sliding governed
by a more generalized friction law. Specifically, the friction law includes an additional
“cohesion” term, representing the shear resistance of the closed crack interface in the
absence of any superimposed normal stress (Bowden and Tabor, 1986 ; Nemat-Nasser
and Obata, 1988), and thereby contains provision for the description of a yield point
in the stress—strain curve. Again, it is assumed that the cracks do not extend or
increase in density during the loading—unloading cycle, although the number of
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actively sliding cracks in the existing population may be a function of load. Due
attention is given to the ensuing conditions for forward and reverse crack-interface
sliding during loading and unloading, allowing for cyclic hysteresis. Nonlinear stress—
strain relations are then derived, and illustrative load—unload curves generated, for a
range of crack densities and sizes and friction terms. A key outcome of the analysis
is the explicit form of these relations, offering in those cases where the cracks are
associated with the microstructure a potential link to characteristic material
parameters.

2. GENERAL STRESS-STRAIN RELATIONS FOR BODIES
CONTAINING NONLINEAR CRACKS

In this section we derive general stress—strain relations for a body containing a
distribution of randomly oriented, non-interacting slit-like cracks. The body is iso-
tropic and linear elastic everywhere but at the crack surface, where irreversible trac-
tions operate. These tractions are assumed to be governed by a nonlinear constitutive
relation between applied stresses and crack-opening displacements. The primary
source of nonlinearity of interest here is that arising from sliding frictional forces
acting between closed crack surfaces in compressive loading. However, other potential
sources of nonlinearity, e.g. from bridging ligaments that restrain crack opening in
tensile loading, may equally well be considered. For simplicity, we will address the
case of uniaxial loading. Extension to more complex, biaxial or triaxial stress states
is straightforward (Kachanov, 1992 ; Kachanov, 1994). Our approach is analogous
to that laid out by previous workers (Walsh, 1965 ; Budiansky and O’Connell, 1976),
except that we modify the formulation in such a way as to allow for nonlinearity.

The starting point for the analysis is an expression for the complementary energy
density of the cracked body as the sum of two terms: the complementary energy
density for the body without cracks, plus the crack energy density W (Appendix A):

J edo = 0*/2E,+ W, )
0

where ¢ is the average strain in the body, ¢ is the applied stress and E, is Young’s
modulus of the uncracked body. If the cracks are non-interacting, W is the sum over
the energies w; of all cracks contained within the volume ¥V of the body :

w=(/V) ; Wi, (2

where N is the crack number density. Differentiation of (1) yields a general strain—
stress relation :
e =o0/Ey+ dW/do. 3)

Equation (3) conveniently expresses the strain as the sum of the strain in the uncracked
body and the additional nonlinear strain from the cracks.
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Fig. 1. Body containing crack, area 4, characteristic length ¢ (4 = Qc?), orientation f to applied stress ¢ :
(a) tension, (b) compression. Resolved normal and shear stresses ¢4 and 74 and corresponding dis-
placements Aii(o4) and As(oy), indicated.

Now consider the crack energy w for an elastic body containing a single internal
crack of area 4 and orientation f relative to the applied stress o, either tension [Fig.
1(a)], or compression [Fig. 1(b)]. Resolved normal and tangential stresses 65 and 14
on the crack plane are
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oy = osin’ i, (4a)
75 = osin ffcos B, (4b)
with corresponding displacement changes averaged over the crack area
Ai(o) = a(o) —a(0), (52)
Av(o) = v(0) —5(0). (5b)

In problems involving cracks in reverse loading with irreversible tractions at the crack
surfaces, or where cracks are subject to internal residual stresses, nonzero values of
#(0) and 7(0) are encountered. The crack energy may be written (Appendix A)

w(o, B) = 24 [ J " Aa(oy) da,g+r Ab(ty) dzﬂ]

=24 Jd [Aa(o, B) sin? B+ Ai(a, B) sin B cos f] do. (6)

0

Strictly, (6) is restricted to cracks with sliding displacements A parallel to the resolved
shear stress 7,. this condition is satisfied for any crack with an elliptical front, including
the limiting cases of penny and straight-front plane cracks, provided one of the
elliptical axes is aligned along the direction of resolved shear stress (Appendix B).
For non-aligned elliptical cracks a tensor form of (6) is needed.

Now suppose the body contains a density N of non-interacting randomly oriented
cracks. If N is sufficiently large, the sum in (2) may be replaced by an integral over
all orientations f§ (Walsh, 1965 ; Budiansky and O’Connell, 1976) :

7/

W(o) = NJ ’ w(a, ) cos fdp. @)

0

Where the cracks are of uniform shape and size, (6) and (7) may be combined to give

W(o) = 2NA r/z r sin f cos S[Ad(o, f) sin f+ Ad(a, ) cos flda dp. ®)

0 [

Where cracks are not active over the entire angular range (as in the case for cracks
with friction, Section 3), angular limits for f in (8) need to be appropriately restricted.

The combination of (3) and (8) provides a general expression for the stress—strain
curve, in terms of the crack-surface displacements A#(o, f) and Ad(a, f§), i.€. in terms
of the constitutive behavior of the individual cracks. These two equations provide the
basic starting point for the case study of cracks with frictional sliding considered in
the following section.

Before concluding this section, two special cases may be noted, as follows. (i) If the
angular limits for active cracks, 8, and f,, are independent of ¢ (linear constitutive
law), then (8) may be readily differentiated with respect to o, as required in (3) :

dW/do =2NA Jﬁz sin f3 cos B[Aii(a, ) sin f+ A (o, B) cos f] df, C)
B
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leaving a single integral over a fixed range of f. (ii) If, further, the displacement
functions Ai(o, f) and Aé(o, f) are both proportional to o, (3) and (9) reduce to a
linear stress—strain curve. Cases considered previously (Walsh, 1965 ; Budiansky and
O’Connell, 1976 ; Horii and Nemat-Nasser, 1983 ; Hashin, 1988 ; Kachanov, 1992;
Kachanov, 1994) are of this form. However, if either of these two conditions is not
satisfied, the stress—strain curve is necessarily nonlinear and must be computed from
the general form of (3) and (8).

3. STRESS-STRAIN CURVES FOR BODIES IN COMPRESSION
LOADING CONTAINING CLOSED CRACKS WITH FRICTIONAL
SLIDING : SINGLE-CRACK SOLUTIONS

In this section we consider the special case of a brittle solid containing a single
closed crack [““shear fault” (Lawn ef al., 1994a)], free of internal residual stresses and
with generalized sliding friction between the crack surfaces (Jaeger and Cook, 1971),
in uniaxial applied compression ¢. The formulation of Section 2 is applicable, with
the restriction that, since the cracks are closed, normal displacements across the crack
plane are precluded (Az = 0). Also, since we shall now be concerned exclusively with
compression loading, we adopt a sign convention that takes compressive stresses and
corresponding displacements as positive.

In the following section we extend the solutions to a body containing specified
distributions of cracks.

3.1. Constitutive friction law

Consider a body containing a crack at orientation f [Fig. 1(b)]. Sliding of the crack
surfaces is driven by the resolved shear stress 7, [equation 4(b)] on the crack plane.
Let this sliding be resisted by a frictional stress t; = 7.+ uo,, where 7. is a ““cohesion
stress”, p is a friction coefficient and o is the resolved normal stress [Equation 4(a)]
(Horii and Nemat-Nasser, 1986 ; Nemat-Nasser and Obata, 1988):

T¢ = T+ po sin’ f. (10)

This relationship has been confirmed extensively in direct measurements of friction
in rocks and soils (Jaeger and Cook, 1971). Many studies (Walsh, 1965) use a
simplified form of (10), with 7, = 0. We will show later that inclusion of the 7, term
is crucial to certain features of the stress—strain behavior, notably the existence of a
yield stress (Nemat-Nasser and Obata, 1988). =

3.2.  Crack sliding displacements

The average sliding displacements of the closed crack surfaces are proportional to
the net shear stresses acting on the crack. The general form is (Walsh, 1965 ; Budiansky
and O’Connell, 1976)
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Stress, 6

Fig. 2. Constitutive stress—displacement relation for body in compression containing single closed shear
crack. Inclined lines represent sliding branches, forward (+) and reverse (—). Vertical lines represent
passive non-sliding branches. Solid line segments indicate hysteretic load—unload-reload cycle.

_ (nc/Ep)(tp—1r)  (loading), (11a)
0= {(nc/Eo)('c,;—i-‘cf) (unloading), (11b)

where c is a characteristic crack dimension, related to crack area by 4 = Qc?, with Q
a dimensionless constant and # a dimensionless crack geometry constant (Appendix
B): for penny cracks, Q = 7 and = 8(1+v)/3n. Note that it is # and not A7 that
appears in (11); since friction is involved, provision must be made for nonzero #(0)
in Av = () —5(0). (Equation (11) is subject to the same restriction mentioned in the
preceding subsection, that the displacements must be in the same direction as the
resolved shear stresses.) With (4b) and (10), (11) may be written in terms of the
applied stress ¢:

(ot (Po—r1. (loading), (12a)
(Eo/neyso = { _ .
o~ (P)o+1. (unloading), (12b)
where we define the quantities
at (B) = sinfcos f—usin?p, (13a)
o~ (B) = sin fcos B+ usin? . (13b)

The constitutive relations in (12) are represented in Fig. 2 as a plot of applied stress
¢ against displacement term (Ey/yc)? for a load—unload-reload cycle. Two sliding
branches (inclined solid lines) are shown : forward (+) branch [equation (12a)], with
displacement-axis intercept —7. and stress-axis intercept t./a* ; reverse (—) branch
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[equation (12b)], with displacement-axis intercept 7, and stress-axis intercept — /o~ .
We identify the following stages (arrows) in the hysteretic loading cycle:

(1) Loading. During initial loading, the crack faces do not slide until the applied
shear stress equals the frictional resistance, corresponding to intersection of
the vertical loading line & = 0 with the upper, forward sliding branch in (12a),
defining a “forward yield stress”

y = T/at (B)
= 1./(sin B cos f— usin® B). (14)

With continued loading above ¢ = g, forward sliding proceeds along the
upper branch in Fig. 2 until the peak stress ¢ = ¢* is reached.

(ii) Unloading. On unloading, the friction terms reverse sign. Initially, the crack
faces remain stationary along the vertical unloading line # = #(¢*) in (12a),
until this unloading line intersects the lower, reverse sliding branch ¢ = 5(0;")
in (12b), defining a “reverse yield stress”

oy = [a" (B)o* —2z]/a” (B)
= [o*(sin f cos f— usin? B) —21.]/(sin B cos B+ usin? ). (15)

With continued unloading below ¢ = o, , reverse sliding proceeds along the
lower branch in Fig. 2, leaving a residual displacement 5(0) = nct./E,at 6 =0
in (12b). Note that if 7, = 0 [as taken in previous analyses (Walsh, 1965)],
then #(0) = 0 (the hysteretic cycle closes). Note also that no reverse sliding
will occur at all if g, < 0, corresponding to ¢* < 27./a*(f) [i.e. peak stress
less than twice the forward yield stress in (14)].

(iii) Reloading. During reloading, the crack faces remain stationary, at & = nct./E,,
until the forward sliding branch is again intersected, at ¢ = ¢, after which
this branch is followed up to ¢*. Further cycling between the same zero and
peak loads then repeats the hysteretic unload—reload loop.

[

This hysteretic formulation lays the groundwork for a consideration of fatigue, by
progressive attrition of u and 7., manifested in Fig. 2 as cyclic shifts in the hysteretic
loop (Padture and Lawn, 1995b).

3.3.  Crack energy and stress—strain curve

For a body containing a crack at orientation f in uniaxial compression ¢ [Fig.
1(b)], insertion of Az = 0 into (6) reduces the crack energy to

w(o, ) = 24 sin ffcos f8 Ja Av(o) do. (16)

0

This integral is evaluated by inserting (12) and (13), in conjunction with (14) and
(15), for the various stages of loading, unloading and reloading. The pertinent energies
at any given applied stress ¢ are represented by the shaded areas in the schematic
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Fig. 3. Stress—displacement diagrams for body with single closed shear crack. Shaded areas represent crack
energies associated with crack—surface sliding : (a) loading, (b) unloading (c) reloading.

plots of ¢(7) in Fig. 3. Note that there are zero contributions to the energy in the
initially passive stages where the crack faces remain stationary: in loading within
0 < o < g, , unloading within o, < ¢ < ¢*, and reloading within 0 < ¢ < 205". Note
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Fig. 4. Stress—strain curve for body with single closed shear crack, showing load—unload-reload cycle. Note
linear segments.

also that the displacement changes used to calculate the energies, and thence the
strains, are measured relative to the displacements at the beginning of sliding in each
of the loading, unloading and reloading segments. Integration then gives:

Qne’[Eo)g™ (Plo—a) (BI?  (loading, o] < o < %), (17a)
w(a, B) ={(Qnc’[Ey)g (B)loy (B)—0]*  (unloading,0 < o < gy ), (17b)
Qnc’Ey) gt (P)lo—20, (P)]?  (reloading,20; < o < 0%*), (17¢)

where again we write crack area 4 in terms of a characteristic linear dimension c,
A = Qc?, and we define the quantities

g* (B) =o" (B)sinfcos

= sin Bcos fB(sin fcos f— usin® f), (18a)
g~ (B) = (B)sinpcosp
= sin B cos f(sin f cos B+ psin® B). (18b)

It is instructive to construct the stress—strain curve o(¢) for this single-crack system,
as in Fig. 4. During the stages of loading, unloading and reloading where the cracks
remain closed and passive, branch slopes are governed by the intrinsic modulus E; of
the uncracked body. Forward and reverse sliding occurs along the upper and lower
sliding branches, with consequent reductions in effective modulus. On these sliding
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branches, the slopes of the functions ¢ (¢) are determined by substituting (17) into (3),
with W= w/Vin (2):

Ey/[14+2QncgT (B)/V]  (loading, reloading), (19a)

(Ao de) = {Eo/[l +200¢g (B)/V]  (unloading), o

which are independent of ¢, and hence are constants. The hysteric cycle comprises
linear segments in Fig. 4. Note again that a residual strain remains after unloading
through the first complete cycle, and that subsequent reload/unload curves form a
repeatable closed hysteresis loop (provided the friction parameters y and 7, do not
degrade in successive cycles).

4. STRESS-STRAIN CURVES FOR BODIES IN COMPRESSION
LOADING CONTAINING CLOSED CRACKS WITH FRICTIONAL
SLIDING : MULTIPLE-CRACK SOLUTIONS

Now let us extend the analysis to a brittle solid containing a distribution of many
cracks governed by the friction relation described in the previous section. To do this,
we integrate the energy expressions for single cracks to determine the energies for the
multiple crack system, from which the stress—strain curves may be calculated. Here,
we consider two distributions: first, all cracks commonly aligned ; second, cracks
randomly oriented.

Before carrying out the energy and stress—strain analyses, consider the allowable
crack orientation range for sliding under any given set of loading conditions.

4.1.  Angular limits for sliding activity

In a body with many crack orientations, sliding activity is confined within limited
ranges of 5, in accordance with the conditions for forward and reverse sliding defined
by the functions o7 (f) and o, (f) in (14) and (15). These functions are plotted
schematically in Fig. 5(a). The loading function ¢; () has a minimum, and unloading
function oy (f) a maximum, at

ﬁ;in = %arCtan(l/:u)» (203)

Brww = arctan {1/[(1+4* +po*/t) ' — ), (20b)

defining yield points ¢ (f4) and 6, (Bn..). The active angular ranges at any given
applied stress ¢ are then determined as intersections between the horizontal heavy
dashed line representing this stress and the appropriate o () and 6, () curves. The
range B to fF for forward sliding expands with increasing stress above
o =0, (), to a maximum at ¢ = ¢*. Similarly, the range ;" to B, for reverse
sliding expands with decreasing applied stress below ¢ = 6, (fna:), 10 @ maximum at
o = 0. With the exception of the special case 7, = 0, the maximum range for reverse
sliding is smaller than the maximum range for forward sliding. Note that in no case
is the angular range of activity complete through the loading—unloading cycle.

For reloading, recall from Section 3.2 that (14) prevails, but with 7, replaced by
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(a)

Reloading'

Applied stress, G

+
1

Unloading

I

-w+ -
E.

Crack orientation, 3

Fig. 5. Plots of loading ¢, () and unloading oy (f) functions in (14) and (15) (heavy curves). (a) Schematic
plot, illustrating angular limits for crack-surface sliding at any specified applied stress ¢ (heavy horizontal
dashed line). (b) Analytical plot, for indicated values of z./a*, at u = 0. (c) Same as (b), but for x = 0.5.

27,. Hence, (20a) remains valid, and the appropriate oy (f) curve is simply displaced
upward on the stress axis by a factor of two, as indicated by the dashed curve in Fig.
5(a) (the unloading curves are unchanged). Accordingly, the active range f;* to
B3 * for reloading will be somewhat lower than for loading. At the same time, the
maximum angular range for reloading (at ¢ = ¢*) is the same as the maximum range
for reverse sliding (at ¢ = 0), resulting in a closed unloading-reloading hysteresis
loop.

Also shown in Fig. 5 are plots of (14) and (15) for selected values of u and 7, (all
stresses normalized to ¢*). For = 0 [Fig. 5(b)] the extreme in these curves occur
universally at f = i, = froax = 45°, regardless of t.. The forward yield stress
oy (B4in) increases, and the reverse yield stress o (fm.x) decreases, with increasing ..
For p = 0.5 [Fig. 5(c)], the angular extrema shift to lower . At the same time,
o, (Bmin) increases and o, (Bn..) decreases still further. The net effect of increasing

either of the friction parameters u and 7. is to diminish the angular range of crack
sliding at any given stress level.
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Applied stress, 6/c*

Applied stress, 6/c*

Nonlinear stress—strain curves for solids

Crack orientation, 3
Fig. 5—Continued.
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Generally, the limiting relations ¢ = ¢,/ (f) and ¢ = o, (f) in (14) and (15) must
be solved numerically for f8, and f,, but two special cases give explicit solutions:

(1) Zero cohesion stress, 1, = 0, the case considered by Walsh (Walsh, 1965). We
obtain

T =0, B35 =arctan(1/p), (21a)
Br =0, B =arctan[(c*—0)/u(c*+0)]. (21b)

In this case, the loading angular range 1 to 7 is independent of ¢. This stress
independence, together with the proportional displacement-stress relation at
7. = 0 in (12), accounts for the linear loading stress—strain curve through the
origin found by Walsh. The fact that the range f; to S5 diminishes with
increasing u also accounts for the reduced modulus relative to the uncracked
body. Note, however, that the corresponding unloading angular range i to
B> is not independent of o, so the unloading stress—strain curve is necessarily
nonlinear. Upon unloading to ¢ = 0, the range 7 to > in (21b) is identical
to the range By to 5 in (21a)—i.e. all cracks which undergo forward sliding
during loading ultimately restore at the completion of the full loading cycle to
their initial state. In this case reloading simply retraces the loading curve.
(il) Zero friction coefficient, u = 0. In this case, we obtain

Bt = sarcsin(2t./o), B3I = m/2— BT, (22a)
Br = ;arcsin [4t./(c*—0)], B7 =mn2—pr, (22b)

where the angular ranges are dependent on o, guaranteeing a nonlinear stress—
strain curve. It follows that any combination of nonzero 7, and y will always
result in nonlinear curves. Note that the range §; to 5 at complete unloading,
o = 0 in (22b), is always less than the range i to 7 at peak loading, ¢ = o*
in (22a), so hysteresis with residual displacements is general. In reloading, 7. is
again replaced by 27, in (22a).

4.2 Energy and stress—strain curve ;. body with aligned cracks

Now consider a body containing a density N of non-interacting cracks of uniform
size ¢, all aligned at some fixed orientation S. Then the energy density W in (2) is
simply equal to Nw, with w from (17):

(p/E)g™* (B)lo—o (B))*  (loading,of < o < o*), (23a)
W(o) = {(p/Eo)g™ (B)loy (B)—0]*  (unloading,0 < o < 0y), (23b)
(p/E)g* (B)lo—207 (B))*  (reloading,20] < o < 6%), (23¢)

where we define a dimensionless parameter containing all the configurational infor-
mation (size, shape, density) on the cracks,

[0}
<

o =QuNc’. (24)
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For penny cracks and Poisson’s ratio v = 0.25, p = 2N¢*.

The assumption of fixed f in (23) leads to explicit expressions for the stress—strain
curves from (3). Moreover, by defining normalized stress o/c* and strains ¢Fy/o*,
these expressions take on universal forms. Then only three parameters are needed to
describe the stress—strain curve completely : t./c*, the normalized cohesion stress; p,
the friction coefficient ; and p the crack configuration coefficient. All segments of the
stress—strain curve for the cracked body remain linear (cf. Fig. 4), with slopes as
follows: for the passive loading—unloading-reloading branches, unity (as for the
reference uncracked body) ; for the sliding branches, reduced values [cf. (19)].

U[14+2pg™ (B)], (oading, reloading), (25a)

d(o/o*)/d(cEy/o*) = {1/[1 +2pg~ (B)]  (unloading). (25b)

Stress—strain curves for the special crack orientation ff = S, i.e. the configuration
of maximum degree of sliding, are plotted in Figs 6-8, for selected values of 7 /o*, u
and p. Various degrees of nonlinearity and hysteresis are evident (cf. Fig. 4 for
notation) :

(1) Effect of cohesion stress. Figure 6 shows curves for 7./* = 0, 0.1, 0.2 and 0.3,
at fixed u = 0.25 and p = 2. In these plots the principal influence of 7. is in the
critical stresses o, = 0 (fmin) and o, = o, (Bhin). At 7/0* = 0, the loading
curve is linear through the origin but with diminished modulus £ < E,, since all
cracks within the active (load-invariant) angular range (Section 3.2) undergo
immediate forward sliding at ¢ = ¢, = 0. The cracks initially unload along a
branch with modulus E, to o, , corresponding to the onset of reverse sliding,
and thereafter along a branch with even more diminished modulus, ultimately
returning to the origin. The system therefore absorbs energy in each cycle, but
leaves zero residual strain. At 7./o* = 0.1, initial loading occurs with modulus
E, to a yield point ¢, , and thereafter with reduced slope to ¢*. Unloading
again occurs along two branches, but with a lower critical reverse sliding stress
o, than at 7./0* = 0. The hysteresis is accentuated, and the residual strain is
no longer zero. At 7./o* = 0.2, o is yet higher, but now g, < 0, so that while
hysteresis remains pronounced, reverse sliding is suppressed. At t./o* = 0.3,
o, lies just below ¢*, and the hysteresis is substantially diminished.

(i) Effect of friction coefficient. Figure 7 shows curves for ¢ =0, 0.5 and 1, at
fixed 7.,/o* = 0.1 and p = 2. Here, the effect of u is felt both in the critical
stresses o, and ¢, and in the slopes of the nonlinear branches. The limiting
case u = 0 is that of pure cohesion-type friction. In contrast with the case
7, = 0 in Fig. 6, a yield point ¢, in the loading half-cycle (as well as ¢ in the
loading half-cycle) is apparent, since a threshold stress must now be exceeded
in order for forward sliding to occur. Hysteresis and residual strain are
manifest. At 4 = 0.5, ¢, increases and o, decreases, and the hysteretic loop
is broader. At u=1, ¢; <0, so the unloading is completely elastic, and
hysteresis is diminished.
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Fig. 6. Stress—strain curves for aligned cracks, evaluated from (3) and (23). Showing effect of cohesion
stress: 1./o* =(a) 0, (b) 0.1, (¢) 0.2 and (d) 0.3, at fixed p = 0.25 and p = 2.
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Fig. 7. Stress—strain curves for aligned cracks, evaluated from (3) and (23). Showing effect of coefficient of
friction: u =(a) 0, (b) 0.5 and (c) 1, at fixed t./o* = 0.1 and p = 2.

(ii1) Effect of crack density. Figure 8 shows curves for p =0, 1 and 2, at fixed
1./6* = 0.1 and u = 0.25. Now it is only the slopes of the nonlinear branches
that are affected, with ¢, and o, invariant. The case p = 0 is trivial, cor-
responding to an ideally elastic response. Increasing p through 1 to 2 pro-
gressively decreases the slopes of the sliding branches, with attendant
increasing hysteresis as the number of active sources increases.
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Fig. 8. Stress—strain curves for aligned cracks, evaluated from (3) and (23). Showing effect of crack density :
p =0, 1and 2, at fixed t./o* = 0.1 and p = 0.25.

4.3.  Energy and stress—strain curve . body with randomly oriented cracks

For the same body containing a density N of non-interacting cracks of uniform
size ¢, but now with the cracks randomly oriented, the energies in (7) and (17) must
be integrated over all angles  within which sliding occurs [Fig. 5(a)] :
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[(p/Eo) : g” () cos Blo— a5 (B)I* dp
B (loading, 6y (Byin) < 0 < 0%], (26a)
iy — 1 OB | 07 cos o )= a
(unloading,0 < ¢ < 65 (B (26b)
(o/Eo) : 9" (B) cos Blo—2a (B))* dB
- - [reloading, 26 (Bin) < 0 < 0%, (26c¢)

with the angular ranges determined in Section 4.1.

As in the previous subsection, it is convenient to introduce stress and strain nor-
malizations o/6* and ¢F;/c*. Substituting (26) into (3), we obtain the dimensionless
stress—strain relations :

- &
6/0*+pd{ g7 (B)cos ﬁ[o/d*—ai(ﬂ)/a*]zdﬂ}/d(a/a*)

JB

[loading, o) (Bin) < 0 < 0*], (27a)
.

By
0/6*+pd{ g~ (B)cos Bloy (B)/o* —a/o*]? dﬁ}/d(o/o*)
BT

eEyjo* = <

[unloading,0 < 0 < 0y (Bna)],  (27b)

(B3
o/o*+pd { ) g* (B) cos Blo/o*—2a] (B)/o*]? dﬁ}/d(a/a*)

JBYf

- [reloading, 20, (Bhin) < 0 < 0*]. (27c)
Since the limits §;, and f, are themselves functions of a/c*, 7./c* and u (Section 4.1),
the functions in (27) are again expressible entirely in terms of just three parameters,
1./o*, uwand p (Section 4.2).

Figure 9 shows a stress—strain curve computed from (27) using 7./o* = 0.1, u = 0.25
and p = 2, for comparison with the corresponding plot for aligned cracks (dashed
lines). The degree of quasi-plasticity is not so pronounced for the randomly oriented
cracks, since only the most favorably aligned cracks will begin sliding at first yield.

5. DISCUSSION

In this study we have described a model for a body containing a distribution of
closed cracks of uniform size in uniaxial loading. We have presented a general
formalism for either tension or compression loading, with provision for frictional
tractions at the crack interface. Special attention has been given to shear cracks in
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Fig. 9. Stress—strain curves for randomly oriented cracks evaluated from (3) and (26), for t.//c* = 0.1,
u=0.25and p = 2: (a) complete load—unload-reload cycle; (b) load-unload cycle, with corresponding
result for cracks aligned at f = S, (dashed lines).

compression loading with a crack-surface friction law of general form. The end result
is a stress—strain response that is generally nonlinear, with well-defined yield stress
and hysteresis in the loading—unloading-reloading cycle, as befits the real behavior of
a wide range of quasi-plastic (quasi-brittle) solids. This formalism, expressible in
terms of friction and crack configuration (and ultimately material microstructure—
see below) parameters, may serve as a constitutive basis for analysis of damage
accumulation in this interesting class of solids.

An element of the present analysis that warrants further comment is the provision
for the existence of a well-defined macroscopic yield stress in compression loading,
by virtue of inclusion of the cohesion term 7, in the friction relation (10) (Sections 3
and 4). “Yield” above some initially elastic region is a distinctive feature of the stress—
strain response in traditionally nonlinear materials like rocks (Jaeger and Cook, 1971)
and concretes (Shah et al., 1995), especially in compression testing. More recently,
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quasi-plasticity has been demonstrated in tough ceramics above critical loads in
Hertzian contact (Guiberteau et al., 1993; Cai et al., 1994a; Lawn et al., 1994b),
where a largely triaxial compression contact field suppresses classical cone fracture
(Frank and Lawn, 1967) in these ordinarily brittle materials. This cohesion term
could arise from any one of several mechanisms, whose character might alter in
successive cycles : direct cohesive forces between the crack walls (chemical or van der
Waals bonding) ; roughness of the crack walls (e.g. cleavage steps, grain boundary
fractures), causing mechanical interlocking ; or frictional debris trapped between the
crack walls, causing residual compression stresses at the crack interface.

In quantifying this quasi-plasticity it has been found expedient to write the loading
stress—strain relation in the sliding region in the empirical form (Fischer-Cripps and
Lawn, 1996)

c=Y+4a(E,—Y) (o6>7), (28)

where Y defines the yield stress, such that & = 1 represents the limit of full elasticity
and o = 0 full plasticity. Equation (28) has the same form as the results in Section 4.2
for aligned cracks. For cracks aligned at f;,, comparison with (14), (20a) and (25)
gives

Y =0y (Bmin) = 2tch(W), (292)
a = 1/[1+pk(u)/2], (29b)
with the friction-dependent functions
h(u) = 1/[(1+p*)"* —p], (30a)
k(u) = [1—p/(1+p*)""]. (30b)

Note that Y =0 at 7. = 0 in (29a), confirming the necessity for 7, to be nonzero in
order for a yield stress to exist. Note also that 2(0) = 1 = k(0) in (30). Finally, note
that for a specified peak stress ¢* there exists an upper limit to frictional resistance
beyond which crack sliding cannot occur at all during the loading cycle, defined by
the condition Y > ¢*, or 2t /o* > (1 4+ u?)*>— u, in (29a) and (30a). The locus of 7./c*
and p values that define this limiting condition is plotted in Fig. 10.

For the case of randomly oriented cracks, the stress—strain curve has a continuously
varying slope beyond the yield point. However, since this variation is generally small
(e.g. Fig. 9), we may closely approximate that portion of the stress—strain curve by a
linear segment, similar to that for aligned cracks but with a greater slope. This linear
segment may be represented by (28), but with an increased slope term o in (29b),
corresponding to an “‘effective” crack density parameter p’. [Note this does not affect
the yield point in (29a).] Table 1 lists best-fit ratios p’/p for various values of 7./c*
and u. Note that the values of this ratio become quite small for large friction terms.

At the fundamental microstructural level, the cracks envisioned in Fig. 1 (and
especially in Section 3 and 4) originate as incipient defects within the material. In
rocks and concretes, these defects are usually associated with pores, weak-phase
inclusions, or pre-present cracks (Walsh, 1965; Jaeger and Cook, 1971 ; Paterson,
1978 ; Batzle et al., 1980 ; Kranz, 1983 ; Zhang et al., 1990 ; Kemeny and Cook, 1991 ;
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Fig. 10. Locus of t./6* and p values delineating domains of sliding and no sliding at crack surfaces.

Table 1. Values of ratio p’[p for selected
friction terms

U

T./o* 0 0.25 0.5 1
0 0.53 0.53 0.51 0.43
0.1 0.50 0.48 0.44 0.32
0.2 0.45 0.41 0.33 0.09
0.3 0.39 0.30 0.10 —

Meredith et al., 1991 ; Wong et al., 1992 ; Shah et al., 1995). In dense ceramics, the
defects are associated with weak interfaces in the microstructure, so-called “‘shear
faults” (since they are shear-activated, exclusively in compression loading) (Lawn et
al., 1994b; Fischer-Cripps and Lawn, 1996). These shear faults may be twins [e.g.
alumina (Guiberteau et al., 1993, 1994 ; Wei and Lawn, 1996), silicon nitride (Xu et
al., 1995)], or weak grain or interphase boundaries [platelet or needle structures, e.g.
in-situ toughened silicon carbide (Padture and Lawn, 1994 ; Padture and Lawn, 1995a,
b), silicon nitride (Xu ez al., 1995), glass-ceramics (Cai et al., 1994a, b), and particle-
reinforced alumina composites (An et al., 1996)].

1t is through the crack configuration parameter p = QyN¢® defined in (24), with its
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embodiment of crack size (c), shape () and density (N), that we may connect the
analysis most directly with the microstructure. As to shape, we have shown that
Qn = 2 (Poisson’s ratio 0.25) for the simplest case of penny cracks (Section 3.2). For
the other factors, consider as an illustrative example a microstructure consisting of
disk-like platelet inclusions with weak inclusion/matrix interfaces [as in several tough
ceramics (Cai et al., 1994a, b; Padture and Lawn, 1994, 1995a,b; An et al., 1996)];
and suppose that each platelet slides along one of the large weak interfaces, i.e. one
planar penny crack per platelet. The volume occupied by any one such platelet is
nc*d = nc®/L, where d is the platelet thickness and L = ¢/d is the aspect ratio. The
density N of cracks per unit volume is therefore determined by the volume fraction
of platelets V;, i.e. N = Vi/(nc*/L) = VL/nc?, so that p = 2N¢* = 2V;L/n. Thus for a
material in which the platelets grow uniformly at the expense of the matrix material
during heat treatment (L constant), the crack density parameter is proportional to
the volume fraction V. For a material in which the platelets grow without increasing
the total concentration of platelet phase (V; constant) [as is the case in some glass-
ceramics (Fischer-Cripps and Lawn, 1996)], the crack density parameter depends
only on the aspect ratio L.

Although we have treated just uniaxial loading, the analysis is readily extendable
to more complex, triaxial stress states. It is necessary only to modify the expressions
for g5 and 15 in (4) in terms of the orthogonally applied normal stresses. For the
special case of superposition of a hydrostatic pressure p onto the uniaxial stress ¢ in
Fig. 1, as pertains, for instance, to rock mechanics experiments under confining
pressures (Jaeger and Cook, 1971 ; Paterson, 1978), the normal stress g increases by
p but the shear stress 7, remains unaltered. Then (10) becomes t; = 7.+ up + po sin’ f,
which is equivalent to the same law as before but with an increased cohesion stress
7.+ up. The analysis may also be extended to inhomogeneous fields by using the
stress—strain functions derived for uniform stress states in Section 3 as constitutive
input into a finite element or other numerical algorithm, as has been done for Hertzian
contacts in quasi-plastic ceramics (Fischer-Cripps and Lawn, 1996).

Our analysis has been restricted to non-interacting crack distributions. Strictly,
allowance should be made for the fact that the energy w; of any crack is affected by
the presence of the other cracks in the distribution, through both the constitutive
relation #(o) of (12) and the local stresses experienced by the crack. Various
approaches based on “effective medium” or “mean field” approximations have been
devised to account for such interactions effects in linear systems (Budiansky and
O’Connell, 1976 ; Horii and Nemat-Nasser, 1983; Aboudi and Benveniste, 1987
Hashin, 1988; Kachanov, 1992). Arguably, additional neighbor-neighbor (‘“‘two-
body”) interaction terms should become manifest in (26) as the separation between
adjacent cracks approaches the crack dimension c itself. In the case of penny cracks
this condition corresponds approximately to p = 2N¢* = 2(1/4¢*)¢® = 0.5. On the
other hand, computer simulations for various distributions indicate that elastic moduli
for non-interacting, non-overlaping cracks remain accurate to surprisingly high
densities, because of a tendency for cancellation of positive and negative interactions.
For example, the difference in moduli for two-dimensional random arrays of cracks
with and without interactions is <5% for densities up to p = 0.7 (Kachanov, 1992).
Accordingly, the present analysis may provide satisfactory approximations for high
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densities of cracks. However, if in such systems overlap occurs, interaction effects can
no longer be neglected.

The analysis also assumes that frictional sliding occurs at the crack surfaces without
any extensile (““wing”) cracking at the fault ends. Such extensile cracking has been
considered widely in quasi-plastic solids under compression loading, most notably in
rocks and concrete (Horii and Nemat-Nasser, 1985 ; Ashby and Hallam, 1986 ; Horii
and Nemat-Nasser, 1986 ; Sammis and Ashby, 1986 ; Nemat-Nasser and Obata, 1988 ;
Kemeny and Cook, 1991 ; Myer et al., 1992 ; Nemat-Nasser and Deng, 1994). It has
also been demonstrated to occur in some ceramics at Hertzian contacts, e.g. in alumina
(Guiberteau et al., 1993 ; Guiberteau et al., 1994 ; Wei and Lawn, 1996) and silicon
nitride (Xu ez al., 1995). In such cases, the fault dimension ¢ increases progressively
with loading, and in some cases also with unloading (Padture and Lawn, 1995a, b),
further reducing the effective modulus. Where interactions become important, this
can lead to strain softening, as reported in the rock and concrete literature (Jaeger
and Cook, 1971 ; Horii and Nemat-Nasser, 1985; Horii and Nemat-Nasser, 1986 ;
Shah et al., 1995).

Finally, some implications concerning fatigue may be noted. We have made an
issue of the existence of hysteresis in the loading—unloading-reloading cycles in Fig.
4, The degree of this hysteresis is governed by the friction parameters 7, and u
(as well as the crack configuration parameter p) in the stress—strain formalism, as
demonstrated in Figs 6-8. If these friction parameters are reduced by cyclic attrition
at the sliding crack surfaces, the hysteretic loop in Fig. 4 contracts along the stress
axis and expands along the strain axis, increasing the system compliance and therefore
the degree of quasi-plasticity (Padture and Lawn, 1995b). Any accompanying extensile
cracking from the ends of the shear cracks only exacerbates the effect (Lawn et al.
1994b). As has been demonstrated in repeat Hertzian contacts in ceramics, the result
of such fatigue processes is a progressive damage accumulation that ultimately results
in exaggerated strength loss and material removal (Padture and Lawn, 1995a, b).
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APPENDIX A: CRACK ENERGY ANALYSIS FOR STRESS-STRAIN
CURVES

In the following derivation the approach used by Budiansky and O’Connell (1976) to
calculate stiffness changes in crack systems is generalized to allow for the imposition of
nonlinear crack-surface tractions. Figure Al depicts such a crack system (upper), with consti-
tutive responses (lower), during loading to its final loaded state by two routes. An expression
for the stress—strain relation follows by equating the changes in mechanical energy (potential
energy of loading system plus strain energy of body) in the two routes.

To start, we restrict our consideration to just normal applied stresses, and leave inclusion of
shear stresses until later. Consider first Route 1 in Fig. Al, where the body with nonlinear
crack-surface tractions is loaded remotely by the applied stress ¢ (0 to o,), with attendant
strain ¢ (0 to ¢,). The change in energy from application of the stress from zero to peak is

oA

Ap, = —VO'ASA—i—VJ ade

0

= —VjAsda, (A1)

0

where V is the volume of the body.
Now consider Route 2 in Fig. Al, taken in two steps. In the first step, restraining tractions
are applied to the crack surfaces to prevent relative displacement of the surfaces as the remote
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Fig. Al. Equivalent stress states for body containing crack with nonlinear tractions in normal loading.
Shaded areas below indicate complementary energies in (A3).

stress o is applied. (In general, the crack faces may be held open in the absence of any applied
stress with average separation 24, by residual stresses or wedging displacement.) The response
is linear as shown, with change in energy

A¢, = — V2 2E,. (A2)

In the second step, the restraining tractions are relaxed by application of opening tractions ¢
on the crack surfaces (0 to o,), allowing the crack opening displacements to increase, thereby
releasing energy w.

Since the final states in Routes 1 and 2 in Fig. Al are identical, we may equate the energies
A, and A¢,—w (equations Al and A2):

J " edo = a%/2E, +w|V. (A3)
0

The three terms in (A3) correspond to the complementary energies shaded in Fig. Al. Differ-
entiation of (A3) then gives

ea = 0a/Eo+(1/V)dw/do,. (A4)
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The energy release w associated with the crack-surface relaxation under the action of the normal
applied stress o is expressible in terms of the averaged displacement i :

w=2A4 FA [oa—0o(@)] diz

Ho

=24 J [@(c) — @] do. (AS)

0

(The factor 2 accounts for the definition of u as one half the total crack surface separation.)

If now the crack is inclined at an angle f§ to the applied stress, as in Fig. 1, the relaxation
process can be carried out independently for the normal stress component 6, and the resolved
shear stress component 7

w =24 [ j " Ai(oy) doy+ f v Ad(ty) drﬂ} (A6)

0 0

with Ad(oy) = i(oy) —(0) and Ad(t5) = 5(ty) —5(0) normal and shear displacement changes,
respectively.

For a body containing N cracks per unit volume, w in (A4) is replaced by the sum over all
cracks contained in volume V. The crack energy density is

W =(1/V) ;VYV W, (A7)

and (A4) becomes
ea = 0a/Ey+dW/do,. (A8)

In the text we drop the subscript A notation in o, ¢ and u, on the understanding there that
these quantities denote final states.

APPENDIX B: CRACK SURFACE DISPLACEMENTS FOR ELLIPTICAL-
FRONTED CRACKS

Consider an elliptical crack with semi-axes ¢ and b parallel to the x and y axes in an infinite,
homogeneous, isotropic, elastic body. A remotely applied shear stress 7 = 7, causes sliding
displacements v,. The average displacement &, over the crack plane can be found from a simple
extension of an analysis given in Budiansky and O’Connell (1976). They pointed out that the
sliding displacement can be written as

,(x,y) = B(be)'*(1—x?[c* —y?[b*)'12, (B1)

where B is a dimensionless constant (a result that follows directly from Eshelby’s discovery
that a homogeneous ellipsoidal inclusion under remote loading experiences uniform strain in
its interior) :

B = [41..(1—=v*)/Eo](b/e)' 7 {k* |[(k* —v) E(k) +v(1 = k) K(K)]}, (B2)

with E; Young’s modulus and v Poisson’s ratio, k* = (1 5*/c?), and K(k) and E(k) complete
elliptical integrals of the first and second kind :

/2
K(k) = J (1—ksin® 0)~'2 o), (B3a)

0
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Fig. BI. Plot of elliptical integral function 5(b/c) for selected values of Poisson’s ratio v.

—

/2
E(k) = J (1—Kk?sin® 6)'/2 d. (B3b)
0

The average displacement is obtained by integration of (B1) over the crack area 4 = mbc:
0. = (1/A)fo.(x,y) d4 = (B[3)(be)'
= (”C/EO)T)(:» (B4)

where we define the dimensionless constant 1(b/c) = (BE,/3t,.)(b/c)". The function n(b/c) is
plotted in Fig. BI, for selected values of v. For a penny crack (b/c = 1),y = 8(1+v)/3n; fora
plane strain crack (b/c = ), n = 4(1 —+v?)/3.

Solutions for a shear stress in an arbitrary direction in the x—y plane can be obtained by
superposition (with t,, obtained by interchanging ¢ and b in the above relations). However, in
that case the resultant displacement and the applied shear stress are in different directions, and
the formulation requires tensor equivalents.





